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Abstract
A density functional perturbation approximation (DFPT), which is based both
on the fundamental-measure theory (FMT) to the hard-sphere repulsion and
on the weighted-density approximations (WDAs) to the attractive contribution,
has been proposed for studying the structural properties of model fluids with
an attractive part of the potential. The advantage of the present theory is
the simplicity of the calculation of the weight function due to the attractive
contribution. It has been applied to predict the equilibrium particle density
distributions and adsorption isotherms of Lennard-Jones fluids at interfaces.
The theoretical results show that the present theory describes quite well the
adsorption isotherms of a Lennard-Jones ethane in a graphite slit pore as well
as the equilibrium particle density distributions of a Lennard-Jones fluid near
a planar slit pore.

1. Introduction

During the last few decades, considerable progress has been made in the understanding of
phenomena originating from the interaction of fluids with surfaces [1–3]. Various theoretical
approaches such as the density functional theories (DFTs) and the integral equation theories
(IETs) have been proposed for predicting the structural properties of model fluids at interfaces.
For the structural properties of model systems with an attractive part of the potential, the
density functional perturbation theories (DFPTs) are often used rather than the DFTs because
of their accuracy in actual applications. Many DFPTs are based on the so-called mean-field
approximation to the attractive term of the free energy, which is not accurate as is seen by
comparison with computer simulations, whereas our DFPTs (or second-order perturbation
theories) [4–6] are based on the macroscopic compressibility approximation (MCA) of Barker
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and Henderson [7]; they require significant computational time when they are applied, but
yield better results than the DFPTs based on the mean-field approximation.

On the other hand, it is generally known that the weighted-density approximations (WDAs)
based on the ‘coarse-grained’ densities explain the structural and thermodynamic properties
of the hard-sphere systems very well [1, 2]. However, many applications of the WDA methods
are mainly restricted to hard-sphere repulsion. WDA methods for addressing an attractive
contribution have been proposed by a few authors [8–11]. In the WDAs to the attractive
contribution, the key point is how one chooses the weight density and weight function. It has
been demonstrated that:

(i) the WDA methods basically developed for the hard-sphere systems can be applied for
studying the structure of model systems with an attractive part of the potential; and that

(ii) the WDA methods applied to the attractive contribution can offer a significant increase in
accuracy over the mean-field approximations for different kinds of simple fluids such as
the sticky hard-sphere fluids [9] and the Lennard-Jones fluids [10, 11].

More recently, Patra and Ghosh [12] have proposed a simple WDA for studying the structure
of a freely rotating fused-hard-sphere chain, where the higher-order WDA of Denton and
Ashcroft [13] was employed to calculate the weight function. They had shown that it describes
the structural properties of a hard-sphere polyatomic fluid with the chain connectivity very well.
Here, the main benefit is the simplicity of calculation of the weight function. The success of
various WDA methods in addressing the attractive contribution encourages one to apply WDA
methods for studying the structure of a Lennard-Jones fluid.

The present paper is organized as follows. In section 2, we will propose a DFPT which
is based on the fundamental-measure theory (FMT) [14] for the hard-sphere repulsion and
the WDAs to the attractive contribution. In section 3, we apply it to study the structure of
Lennard-Jones fluids in planar slit pores. We compare our results with computer simulations
and the DFPTs based on the first-order and second-order perturbation theories for a liquid.
Finally, a brief discussion on the strengths and weaknesses of the present approximation is
included.

2. Density functional perturbation theory (DFPT)

In the DFPT, the equilibrium particle density distribution ρ(�r) is described via the minimum
of the grand canonical potential �[ρ] satisfying the Euler–Lagrange relation δβ�[ρ]/δρ(�r) =
0 [1, 2]. If the inhomogeneous fluid is in contact with the homogeneous bulk fluid, its chemical
potential µ is equal to that of the homogeneous bulk fluid. Then, the density profile equation
is given, after some manipulations, as

ln

[
ρ(�r)

ρ

]
= −βuext(�r) + c(1)

hs (�r; [ρ]) + c(1)
att (�r; [ρ]) − c(1)

hs (ρ) − c(1)
att (ρ), (1)

where ρ denotes the homogeneous bulk density, β = 1/kBT is the inverse temperature, kB is
Boltzmann’s constant, and βuext(r) is the external potential corresponding to the liquid–solid
interaction. In equation (1), c(1)

hs (�r; [ρ]) and c(1)
att (�r; [ρ]) are the one-particle direct correlation

functions (DCFs) corresponding to the inhomogeneous fluid, which are defined as

c(1)

hs (�r; [ρ]) = −δβ Fhs[ρ]

δρ(�r)
, and c(1)

att (�r; [ρ]) = −δβ Fatt[ρ]

δρ(�r)
, (2)

where Fhs[ρ] is the free energy corresponding to the hard-sphere repulsion and Fatt[ρ] is the
free energy corresponding to the attractive contribution.
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For the Lennard-Jones fluids, the hard-sphere contribution is usually approximated by
that of an equivalent hard-sphere fluid with the diameter d [7]. To approximate the free
energy Fhs[ρ] corresponding to the hard-sphere contribution, we use the FMT which is the
most successful approximation for a hard-sphere system and was proposed by Rosenfeld and
co-workers [14]. In this case, the one-particle DCF c(1)

hs (�r; [ρ]) is simply given by

c(1)

hs (�r; [ρ]) = −
∫

d�s
∑

α

∂ f [nγ (�s)]
∂nα(�r)

ωα(|�r − �s|), (3)

where f [nα(�r)] is the excess free energy of a hard-sphere system per volume, ωα(r) is the
weight function, and nα(�r) = ∫

d�s ρ(�s)ωα(|�r − �s|) is the system-averaged fundamental
geometric measure of the particles. Here, we do not describe the functional, c(1)

hs (�r; [ρ]),
in detail since it has been well documented elsewhere [14].

On the other hand, little is known about the excess free energy Fatt[ρ] of the attractive
contribution. For this purpose, we introduce the hybrid weighted-density approximation
(HWDA) which was introduced by Leidl and Wagner [15]. In this case, the excess free
energy Fatt[ρ], which is a functional of the local density distribution, is given by

Fatt[ρ] =
∫

d�r ρ(�r) fatt[ρ̄(�r)], (4)

where fatt(ρ) is the excess free energy per particle and the weight density ρ̄(�r) is assumed as

ρ̄(�r1) =
∫

d�r2 ρ(�r2)ωatt(�r1 − �r2; ρ̂) (5)

with ρ̂[ρ] = 1/N
∫

d�r1 ρ(�r1)
∫

d�r2 ρ(�r2)ωatt(�r1 − �r2; ρ̂). Then, the one-particle DCF
c(1)

att (�r; [ρ]) that appeared in equation (1) becomes, from equations (4) and (5),

c(1)
att (�r1; [ρ]) = β fatt[ρ̄(�r1)] +

∫
d�r2 ρ(�r2)β f ′

att[ρ̄(�r2)]
δρ̄(�r2)

δρ(�r1)
, (6)

where the prime denotes the derivative with respect to the density.
To determine the weight function ωatt(r, ρ), we use the higher-order WDA of Denton

and Ashcroft [13] which was employed successfully for different types of complex fluid and
recently examined by Patra and Ghosh [12] for the freely rotating fused-hard-sphere chain. In
this case, the weight function is simply given by

ωatt(r, ρ) = c(2)
att (r, ρ)∫

d�r c(2)
att (r, ρ)

, (7)

where c(2)
att (r, ρ) is the two-particle DCF corresponding to the attractive contribution and

watt(r, ρ) satisfies the normalization condition
∫

d�r watt(r, ρ) = 1. In the uniform limit,
equation (6) satisfies

c(1)
att (ρ) = β fatt(ρ) + ρβ f ′

att(ρ) (8)

since ρ̂[ρ] = ρ̄(�r) = ρ and
∫

d�r watt(r, ρ) = 1. Combined, equations (1), (3)–(8)
constitute the density profile equation for the DFPT based on the HWDA and the higher-
order WDA. As a comment, we note that in the original HWDA proposed by Leidl and
Wagner [15], the weight function ωatt(r, ρ) is specified by the definition of the two-particle
DCF c(2)

att (�r1 − �r2, ρ) ≡ −δ2β Fatt[ρ]/δρ(�r1)δρ2(�r2)|ρ(�r)−>ρ . In Fourier space, the weight
function has a simple algebraic form such as

ρ f ′′
att(ρ)ωatt(k, ρ)ωatt(k, ρ) + 2 f ′

att(ρ)ωatt(k, ρ) + β−1c(2)
att (k, ρ) = 0. (9)

Equation (9) requires that fatt(ρ) is consistent with the two-particle DCF c(2)
att (r, ρ), to satisfy

the normalization condition
∫

d�r watt(r, ρ) = 1.
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3. Results and discussion

3.1. A Lennard-Jones fluid at a hard wall

As an application, a structureless hard wall is considered:

uext(z) =
{

∞, z < 0,

0, z > 0.
(10)

For a slit-like pore, the equilibrium particle density distribution just depends on z by a symmetry
property, and not on x, y; ρ(�r) = ρ(z) and ρ̂[ρ] = ρ. Thus, we define the z-axis to be
perpendicular to the walls. The density profile equation, equation (1), becomes

ln

[
ρ(z)

ρ

]
= c(1)

hs (z; [ρ]) + c(1)
att (z; [ρ]) − c(1)

hs (ρ) − c(1)
att (ρ), for z > 0, (11)

with the plane-averaged form c(1)(z; [ρ]) = ∫ +∞
−∞ dx

∫ +∞
−∞ dy c(1)(

√
x2 + y2 + z2; [ρ]). To

compare with the computer simulation, the Lennard-Jones potential φLJ(r) was cut off at rc

and shifted:

φCS(r) =
{

φLJ(r) − φLJ(rc) if r < rc,

0 if r > rc,
(12)

where φCS(r) is the cut and shifted Lennard-Jones potential.
The FMT [14] proposed by Rosenfeld and co-workers was employed to calculate the one-

particle DCF c(1)

hs (�r; [ρ]) due to the hard-sphere repulsion. The effective hard-sphere diameter,
d , was chosen according to the Barker–Henderson (BH) prescription [7]

d =
∫

dr [1 − exp[−βφrep(r)], (13)

where βφrep(r) is the repulsive part of a cut and shifted Lennard-Jones potential φCS(r). The
excess free energy fatt(ρ) corresponding to the attractive contribution is given by

fatt(ρ) = fLJ(ρ) − fhs(ρ), (14)

where fhs(ρ) and fLJ(ρ) are the excess free energy for the hard-sphere contribution and for
the Lennard-Jones fluid, respectively. The quasi-exact Carnahan–Starling result for the hard-
sphere repulsion was used; it is given by fhs(ρ) = η(4 − 3η)/(1 − η)2, where the packing
fraction η is η = πρσ 3/6 [16]. The empirical equation of state of Johnson et al [17] was used
to calculate the excess free energy fatt(ρ) for the truncated Lennard-Jones potential, where
a mean-field correction is applied to the equation of state to account for the truncation and
shifting of the Lennard-Jones potential:

fatt(ρ) = fLJ(ρ) − fhs(ρ) − ρ

2

∫ rc

0
d�r φLJ(rc) − ρ

2

∫ ∞

rc

d�r φLJ(r). (15)

The two-particle DCF c(2)
att (r, ρ) corresponding to the attractive contribution becomes

c(2)
att (r, ρ) = c(2)

LJ (r, ρ) − c(2)

hs (r, ρ) (16)

where c(2)

hs (r, ρ) and c(2)
LJ (r, ρ) are the two-particle DCFs for the hard-sphere contribution and

for the Lennard-Jones fluids, respectively. To calculate the two-particle DCF, the integral
equation with the Ornstein–Zernike integral equation was solved:

g(r, ρ) = exp[−βφ(r) + γ (r, ρ) + B(r, ρ)], (17)
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Figure 1. Equilibrium particle density distributions ρ(z)σ 3 for a confined Lennard-Jones fluid at
bulk density ρσ 3 = 0.5 (T ∗ = 1.35). The solid curve and circles are from the present theory and
the computer simulations [20], respectively.

where γ (r, ρ) = g(r, ρ) − 1 − c(2)(r, ρ) is the total correlation function, g(r, ρ) the pair
correlation function, and B(r) the bridge function. For the hard-sphere system, we have used
the modified Verlet bridge function Bhs(r, ρ) [18]:

Bhs(r, ρ) = −1

2

γhs(r, ρ)2

1 + 0.8γhs(r, ρ)
(18)

where γhs(r, ρ) = ghs(r, ρ) − 1 − c(2)

hs (r, ρ). For the Lennard-Jones interaction c(2)
LJ (r, ρ), an

approximate BLJ(r) = BLJ[s(r)] which was proposed by Duh and Henderson [19] is used
here; it is given by

BLJ(s) =




−1

2

s2

1 + 5s+11
7s+9 s

, s � 0,

− 1
2 s2, s < 0,

(19)

with

s(r) = gLJ(r, ρ) − 1 − c(2)
LJ (r, ρ) + 4

ε

kBT

(σ

r

)6
exp

[
− 1

ρσ 3

(σ

r

)6ρσ 3]
. (20)

Throughout the numerical calculations, the diameter of a hard sphere σ was taken as the unit
length. A standard Picard iteration technique was used to calculate the density distribution
ρ(z). To compare with the computer simulation, the Lennard-Jones potential was cut off at
rc = 4.0σ and shifted.

The calculated density profiles of a Lennard-Jones fluid at the reduced temperature
T ∗ ≡ kBT/ε = 1.35 are presented in figures 1–3 along with the computer simulations [20].
At bulk density ρσ 3 = 0.5, the present theory shows a slightly lower density distribution
near a hard wall compared with the computer simulations, whereas at high density it shows
a slightly higher density distribution compared with the computer simulations. However, the
overall picture indicates that the theoretical results are in good agreement with the computer
simulations for the particle density distributions. A comparison with other approximations
shows that the present theory is better than the DFPT of Tang et al [5, 6] based on the MCA of
Barker and Henderson [7] and compares with the partitioned DFT of Zhou [21]. In the case of
the DFPT based on the MCA, the critical point T ∗

c = 1.303 and ρcσ
3 = 0.275 compares with
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Figure 2. As figure 1 except that ρσ 3 = 0.65.

Figure 3. As figure 1 except that ρσ 3 = 0.82.

the computer simulation values T ∗
c = 1.36 and ρcσ

3 = 0.36 [5]. In the partitioned DFT of
Zhou [21], the mixing parameter λ was specified by a hard-wall sum rule, which specifies the
bulk pressure Pbulk via the hard-wall contact density ρw: β Pbulk = ρw = ρ(z = 0). This means
that for a hard planar slit, the theoretical density at the hard wall exactly coincides with that of
the computer simulations. We here note that the present theory expected from figures 1–3 does
not yield the correct contact density at the hard wall, because of the approximate two-particle
DCF based on the bridge function [19]. However, we can obtain the correct contact density if
the exact two-particle DCF and free energy are provided. On the other hand, the success of the
present theory demonstrates that the WDA methods can be applied for studying the structure
of the model systems with the attractive part of the potential.

3.2. Supercritical adsorption of a Lennard-Jones ethane in slit pores

As the second application, we consider the supercritical adsorption of a Lennard-Jones ethane
in a graphite surface. This system has been studied previously by several authors [22–24]
through computer simulations and DFPTs. In this case, the ethane is modelled by a Lennard-
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Figure 4. Adsorption isotherms of a Lennard-Jones ethene in a graphite slit (T ∗ = 1.35 and
H = 5σ ). The solid curve, solid circles, and open squares are from the present theory, the
simulations of Sweatman [10], and the simulations of van Megan and Snook [22], respectively.

Jones potential truncated at rc = 2.5σ and shifted. The solid–fluid potential usf(z) is modelled
by a Steele 10–4–3 potential [25] with a single graphite slab:

usf(z) = εw

[
2

5

(
σw

z

)10

−
(

σw

z

)4

− σ 4

3�(z + 0.61�)3

]
, z > 0, (21)

where z is the distance from the graphite surface, σw = 0.903σ , εw = 12.96ε, and
� = 0.8044σ . For the Lennard-Jones ethane within a graphite pore, the ethane molecule
interacts with both graphite walls, so the total solid–fluid interaction, the external potential
uext(z), will be the sum of two terms of the type given by equation (21):

βuext(z) = βusf(z) + βusf(H − z), (22)

where H is the width of a planar slit pore. For the graphite slit pore, the density profile
expression, equation (1), becomes

ln

[
ρ(z)

ρ

]
=−βuext(z) + c(1)

hs (z; [ρ]) + c(1)
att (z; [ρ]) − c(1)

hs (ρ) − c(1)
att (ρ), for 0 < z < H.

(23)

For the numerical calculations, the empirical equation of state of Johnson et al [17] was used
for calculating the excess free energy fatt(ρ) for the truncated Lennard-Jones potential, where a
mean-field correction is applied to the equation of state to account for the truncation and shifting
of the Lennard-Jones potential. The bridge function proposed by Duh and Henderson [19] was
used to calculate the two-particle DCF c(2)

LJ (r, ρ).
The adsorption isotherms of a Lennard-Jones ethene confined in graphite slit pores with

H = 5σ and 3.5σ at the reduced temperature T ∗ = 1.35 are displayed in figures 4 and 5.
Here, the adsorption isotherm � is defined as

� =
∫ H

0
[ρ(z) − ρ] dz. (24)

As can be seen from figures 4 and 5, the theoretical calculation shows good agreement with
the computer simulations [10, 22]. However, small discrepancies between the theoretical
calculation and the computer simulation are found at low density. For example, the bulk density
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Figure 5. As figure 4 except that H = 3.5σ .

ρσ 3 = 0.093 34 for H = 5σ corresponds to that at which the adsorption is a maximum [10],
whereas for the present theory the maximum adsorption is found to be ρσ 3 ≈ 0.058. For
H = 3.5σ , the computer simulation shows the maximum adsorption at ρσ 3 = 0.0497, while
the present theory shows the maximum adsorption at ρσ 3 ≈ 0.045. We can suggest that
this discrepancy perhaps comes from the deficiencies in the description of the Lennard-Jones
fluid confined in a slit pore. A comparison with other approximations [10] indicates that the
present theory is better than the DFMFT (density functional mean-field theory) based both
on the mean-field approach for generation of supercritical adsorption isotherms and on the
effective hard-sphere diameter of Lu et al [26]. Actually, the adsorption isotherms predicted
by the DFMFT are generally underestimated compared with the computer simulations. On the
other hand, our results compare with the DFPT of Sweatman [10], although we did not display
their results [10] in the figures. It is noted that the DFPT of Sweatman is based on the linear
approximation for the weight density ωatt(r, ρ) = w0(r) + ρω1(r) and the ad hoc assumption
of the density parameter ρ1 = ∫

d�r | �∇ρ(�r)|ρ̄(�r)/
∫

d�r | �∇ρ(�r)| [10]. However, it will not be
possible to obtain an accurate two-particle DCF if ρ1 is inside the unstable spinodal region.

In figures 6 and 7, we have shown the equilibrium particle density distributions
corresponding to bulk densities of ρσ 3 = 0.093 34 and 0.0497 with H = 5σ and 3.5σ ,
respectively. For H = 5σ , the computer simulations show four pronouncedly dense absorbed
layers. As expected from the adsorption isotherms predicted by the present theory, the present
theory compares with the computer simulations very well. Notice here that the first high peak
is strongly affected by the external potential βuext(z). Once again, the overall picture indicates
that the present theory based on the HWDA and higher-order WDA describes quite well the
adsorption isotherm as well as the equilibrium particle density distribution of a Lennard-Jones
ethene in a graphite slit pore. The above result along with the DFPT of Sweatman indicates that
the WDA methods applied to the attractive contribution are more accurate than the DFMFT
based on the mean-field approximation and the DFPT based on the MCA.

In summary, in this paper we have proposed a DFPT based on the FMT and WDAs for
studying the structure of nonuniform Lennard-Jones fluids at interfaces. The theoretical results
indicate that the WDA methods applied to the attractive contribution can offer a significant
increase in accuracy over the DFMFT and DFPT based on the MCA. The advantages of the
present theory are that: (i) it is computationally much simpler than all other DFPTs such
as the first-order perturbation theory employed by Wadewitz and Winkelmann [27] and the
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Figure 6. Equilibrium particle density distributions ρ(z)σ 3 of a Lennard-Jones ethene in a graphite
slit pore at the bulk density ρσ 3 = 0.093 34 (T ∗ = 1.35 and H = 5σ ). The solid curve and circles
are from the present theory and the computer simulations [10], respectively.

Figure 7. As figure 6 except that ρσ 3 = 0.0497 and H = 3.5σ .

DFPT based on the MCA of Barker and Henderson [5]; and (ii) it does not require fatt(ρ)

to be consistent with the two-particle DCF c(2)
att (r, ρ) to satisfy the normalization condition∫

d�r watt(r, ρ) = 1, unlike other proposed WDA methods. The disadvantage is that the two-
particle DCF c(2)

att (r, ρ) and the excess free energy fatt(ρ) of model fluids come from other
theories. On the other hand, it is expected that the present theory could be applicable to at least
some of the model fluids confined in strong external fields, such as in capillary condensation
in carbon nanopores [3, 11, 28, 29]. In this case, the phase transitions between the liquid state
and the vapour state are expected from geometrical confinement. We will investigate these
problems in a study in the near future.
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